Standard library header <linalg> (C++26)
From cppreference.net
Cet en-tête fait partie de la bibliothèque numérique .
Classes |
||
|
Défini dans l'espace de noms
std::linalg
|
||
|
(C++26)
|
std::mdspan
politique de mappage de disposition qui représente une matrice carrée stockant uniquement les entrées d'un triangle, dans un format contigu compact
(modèle de classe) |
|
|
(C++26)
|
std::mdspan
politique d'accès dont la référence représente le produit d'un facteur d'échelle fixe et de la référence de son accesseur
std::mdspan
imbriqué
(modèle de classe) |
|
|
(C++26)
|
std::mdspan
politique d'accès dont la référence représente le conjugué complexe de la référence
de l'accesseur
std::mdspan
imbriqué
(modèle de classe) |
|
|
(C++26)
|
std::mdspan
politique de mappage de disposition qui échange les deux indices, dimensions et pas les plus à droite de toute politique de mappage de disposition unique
(modèle de classe) |
|
Étiquettes |
||
|
Défini dans l'espace de noms
std::linalg
|
||
|
décrit l'ordre des éléments dans un
std::mdspan
avec la disposition
linalg::layout_blas_packed
(balise) |
||
|
spécifie si les algorithmes et autres utilisateurs d'une matrice doivent accéder au triangle supérieur ou au triangle inférieur de la matrice
(balise) |
||
|
spécifier si les algorithmes doivent accéder aux entrées diagonales de la matrice
(balise) |
||
Fonctions |
||
|
Défini dans l'espace de noms
std::linalg
|
||
Transformations en place |
||
|
(C++26)
|
retourne un nouveau
std::mdspan
en lecture seule calculé par le produit élément par élément du facteur d'échelle et des éléments correspondants du
std::mdspan
donné
(modèle de fonction) |
|
|
(C++26)
|
retourne un nouveau
std::mdspan
en lecture seule dont les éléments sont les conjugués complexes des éléments correspondants du
std::mdspan
donné
(modèle de fonction) |
|
|
(C++26)
|
retourne un nouveau
std::mdspan
représentant la transposée de la matrice d'entrée via le
std::mdspan
donné
(modèle de fonction) |
|
|
(C++26)
|
renvoie une vue transposée conjuguée d'un objet
(modèle de fonction) |
|
Fonctions BLAS 1 |
||
|
(C++26)
|
génère une rotation plane
(modèle de fonction) |
|
|
(C++26)
|
applique une rotation plane aux vecteurs
(modèle de fonction) |
|
|
(C++26)
|
échange tous les éléments correspondants d'une matrice ou d'un vecteur
(modèle de fonction) |
|
|
(C++26)
|
remplace la matrice ou le vecteur par le résultat du calcul de la multiplication élément par élément par un scalaire
(modèle de fonction) |
|
|
(C++26)
|
copie les éléments d'une matrice ou d'un vecteur dans un autre
(modèle de fonction) |
|
|
(C++26)
|
additionne des vecteurs ou matrices élément par élément
(modèle de fonction) |
|
|
(C++26)
|
retourne le produit scalaire non conjugué de deux vecteurs
(modèle de fonction) |
|
|
(C++26)
|
retourne le produit scalaire conjugué de deux vecteurs
(modèle de fonction) |
|
|
(C++26)
|
retourne la somme pondérée des carrés des éléments du vecteur
(modèle de fonction) |
|
|
(C++26)
|
retourne la norme euclidienne d'un vecteur
(modèle de fonction) |
|
|
(C++26)
|
retourne la somme des valeurs absolues des éléments du vecteur
(modèle de fonction) |
|
|
(C++26)
|
retourne l'indice de la valeur absolue maximale des éléments du vecteur
(modèle de fonction) |
|
|
(C++26)
|
retourne la norme de Frobenius d'une matrice
(modèle de fonction) |
|
|
(C++26)
|
retourne la norme un d'une matrice
(modèle de fonction) |
|
|
(C++26)
|
retourne la norme infinie d'une matrice
(modèle de fonction) |
|
Fonctions BLAS 2 |
||
|
(C++26)
|
calcule le produit matrice-vecteur
(modèle de fonction) |
|
|
(C++26)
|
calcule le produit matrice-vecteur symétrique
(modèle de fonction) |
|
|
(C++26)
|
calcule le produit matrice-vecteur hermitien
(modèle de fonction) |
|
|
(C++26)
|
calcule le produit matrice-vecteur triangulaire
(modèle de fonction) |
|
|
(C++26)
|
résout un système linéaire triangulaire
(modèle de fonction) |
|
|
(C++26)
|
effectue une mise à jour de rang 1 non symétrique et non conjuguée d'une matrice
(modèle de fonction) |
|
|
(C++26)
|
effectue une mise à jour de rang 1 non symétrique conjuguée d'une matrice
(modèle de fonction) |
|
|
(C++26)
|
effectue une mise à jour de rang 1 d'une matrice symétrique
(modèle de fonction) |
|
|
(C++26)
|
effectue une mise à jour de rang 1 d'une matrice hermitienne
(modèle de fonction) |
|
|
(C++26)
|
effectue une mise à jour de rang 2 d'une matrice symétrique
(modèle de fonction) |
|
|
(C++26)
|
effectue une mise à jour de rang 2 d'une matrice hermitienne
(modèle de fonction) |
|
Fonctions BLAS 3 |
||
|
(C++26)
|
calcule le produit matriciel
(modèle de fonction) |
|
|
(C++26)
|
calcule le produit matriciel symétrique
(modèle de fonction) |
|
|
(C++26)
|
calcule le produit matriciel hermitien
(modèle de fonction) |
|
|
calcule le produit matriciel triangulaire
(modèle de fonction) |
||
|
(C++26)
|
effectue une mise à jour de rang k d'une matrice symétrique
(modèle de fonction) |
|
|
(C++26)
|
effectue une mise à jour de rang k d'une matrice hermitienne
(modèle de fonction) |
|
|
(C++26)
|
effectue une mise à jour de rang 2k d'une matrice symétrique
(modèle de fonction) |
|
|
(C++26)
|
effectue une mise à jour de rang 2k d'une matrice hermitienne
(modèle de fonction) |
|
|
résout plusieurs systèmes linéaires triangulaires
(modèle de fonction) |
||
Synopsis
namespace std::linalg { // étiquettes d'ordre de stockage struct column_major_t; inline constexpr column_major_t column_major; struct row_major_t; inline constexpr row_major_t row_major; // étiquettes de triangle struct upper_triangle_t; inline constexpr upper_triangle_t upper_triangle; struct lower_triangle_t; inline constexpr lower_triangle_t lower_triangle; // étiquettes diagonales struct implicit_unit_diagonal_t; inline constexpr implicit_unit_diagonal_t implicit_unit_diagonal; struct explicit_diagonal_t; inline constexpr explicit_diagonal_t explicit_diagonal; // modèle de classe layout_blas_packed template<class Triangle, class StorageOrder> class layout_blas_packed; // concepts et traits d'exposition uniquement template<class T> struct __is_mdspan; // exposition uniquement template<class T> concept __in_vector = /* voir description */; // exposition uniquement template<class T> concept __out_vector = /* voir description */; // exposition uniquement template<class T> concept __inout_vector = /* voir description */; // exposition uniquement template<class T> concept __in_matrix = /* voir description */; // exposition uniquement template<class T> concept __out_matrix = /* voir description */; // exposition uniquement template<class T> concept __inout_matrix = /* voir description */; // exposition uniquement template<class T> concept __possibly_packed_inout_matrix = /* voir description */; // exposition uniquement template<class T> concept __in_object = /* voir description */; // exposition uniquement template<class T> concept __out_object = /* voir description */; // exposition uniquement template<class T> concept __inout_object = /* voir description */; // exposition uniquement // transformation mise à l'échelle en place template<class ScalingFactor, class Accessor> class scaled_accessor; template<class ScalingFactor, class ElementType, class Extents, class Layout, class Accessor> constexpr auto scaled(ScalingFactor scaling_factor, mdspan<ElementType, Extents, Layout, Accessor> x); // transformation conjuguée en place template<class Accessor> class conjugated_accessor; template<class ElementType, class Extents, class Layout, class Accessor> constexpr auto conjugated(mdspan<ElementType, Extents, Layout, Accessor> a); // transformation transposée en place template<class Layout> class layout_transpose; template<class ElementType, class Extents, class Layout, class Accessor> constexpr auto transposed(mdspan<ElementType, Extents, Layout, Accessor> a); // transformation conjuguée transposée en place template<class ElementType, class Extents, class Layout, class Accessor> constexpr auto conjugate_transposed(mdspan<ElementType, Extents, Layout, Accessor> a); // algorithmes // calculer la rotation de Givens template<class Real> struct setup_givens_rotation_result { Real c; Real s; Real r; }; template<class Real> struct setup_givens_rotation_result<complex<Real>> { Real c; complex<Real> s; complex<Real> r; }; template<class Real> setup_givens_rotation_result<Real> setup_givens_rotation(Real a, Real b) noexcept; template<class Real> setup_givens_rotation_result<complex<Real>> setup_givens_rotation(complex<Real> a, complex<Real> b) noexcept; // appliquer la rotation de Givens calculée template<__inout_vector InOutVec1, __inout_vector InOutVec2, class Real> void apply_givens_rotation(InOutVec1 x, InOutVec2 y, Real c, Real s); template<class ExecutionPolicy, __inout_vector InOutVec1, __inout_vector InOutVec2, class Real> void apply_givens_rotation(ExecutionPolicy&& exec, InOutVec1 x, InOutVec2 y, Real c, Real s); template<__inout_vector InOutVec1, __inout_vector InOutVec2, class Real> void apply_givens_rotation(InOutVec1 x, InOutVec2 y, Real c, complex<Real> s); template<class ExecutionPolicy, __inout_vector InOutVec1, __inout_vector InOutVec2, class Real> void apply_givens_rotation(ExecutionPolicy&& exec, InOutVec1 x, InOutVec2 y, Real c, complex<Real> s); // échanger les éléments template<__inout_object InOutObj1, __inout_object InOutObj2> void swap_elements(InOutObj1 x, InOutObj2 y); template<class ExecutionPolicy, __inout_object InOutObj1, __inout_object InOutObj2> void swap_elements(ExecutionPolicy&& exec, InOutObj1 x, InOutObj2 y); // multiplier les éléments par un scalaire template<class Scalar, __inout_object InOutObj> void scale(Scalar alpha, InOutObj x); template<class ExecutionPolicy, class Scalar, __inout_object InOutObj> void scale(ExecutionPolicy&& exec, Scalar alpha, InOutObj x); // copier les éléments template<__in_object InObj, __out_object OutObj> void copy(InObj x, OutObj y); template<class ExecutionPolicy, __in_object InObj, __out_object OutObj> void copy(ExecutionPolicy&& exec, InObj x, OutObj y); // addition élément par élément template<__in_object InObj1, __in_object InObj2, __out_object OutObj> void add(InObj1 x, InObj2 y, OutObj z); template<class ExecutionPolicy, __in_object InObj1, __in_object InObj2, __out_object OutObj> void add(ExecutionPolicy&& exec, InObj1 x, InObj2 y, OutObj z); // produit scalaire non conjugué de deux vecteurs template<__in_vector InVec1, __in_vector InVec2, class Scalar> Scalar dot(InVec1 v1, InVec2 v2, Scalar init); template<class ExecutionPolicy, __in_vector InVec1, __in_vector InVec2, class Scalar> Scalar dot(ExecutionPolicy&& exec, InVec1 v1, InVec2 v2, Scalar init); template<__in_vector InVec1, __in_vector InVec2> auto dot(InVec1 v1, InVec2 v2) -> /* voir description */; template<class ExecutionPolicy, __in_vector InVec1, __in_vector InVec2> auto dot(ExecutionPolicy&& exec, InVec1 v1, InVec2 v2) -> /* voir description */; // produit scalaire conjugué de deux vecteurs template<__in_vector InVec1, __in_vector InVec2, class Scalar> Scalar dotc(InVec1 v1, InVec2 v2, Scalar init); template<class ExecutionPolicy, __in_vector InVec1, __in_vector InVec2, class Scalar> Scalar dotc(ExecutionPolicy&& exec, InVec1 v1, InVec2 v2, Scalar init); template<__in_vector InVec1, __in_vector InVec2> auto dotc(InVec1 v1, InVec2 v2) -> /* voir description */; template<class ExecutionPolicy, __in_vector InVec1, __in_vector InVec2> auto dotc(ExecutionPolicy&& exec, InVec1 v1, InVec2 v2) -> /* voir description */; // Somme mise à l'échelle des carrés des éléments d'un vecteur template<class Scalar> struct sum_of_squares_result { Scalar scaling_factor; Scalar scaled_sum_of_squares; }; template<__in_vector InVec, class Scalar> sum_of_squares_result<Scalar> vector_sum_of_squares(InVec v, sum_of_squares_result<Scalar> init); template<class ExecutionPolicy, __in_vector InVec, class Scalar> sum_of_squares_result<Scalar> vector_sum_of_squares(ExecutionPolicy&& exec, InVec v, sum_of_squares_result<Scalar> init); // Norme euclidienne d'un vecteur template<__in_vector InVec, class Scalar> Scalar vector_two_norm(InVec v, Scalar init); template<class ExecutionPolicy, __in_vector InVec, class Scalar> Scalar vector_two_norm(ExecutionPolicy&& exec, InVec v, Scalar init); template<__in_vector InVec> auto vector_two_norm(InVec v) -> /* voir description */; template<class ExecutionPolicy, __in_vector InVec> auto vector_two_norm(ExecutionPolicy&& exec, InVec v) -> /* voir description */; // somme des valeurs absolues des éléments du vecteur template<__in_vector InVec, class Scalar> Scalar vector_abs_sum(InVec v, Scalar init); template<class ExecutionPolicy, __in_vector InVec, class Scalar> Scalar vector_abs_sum(ExecutionPolicy&& exec, InVec v, Scalar init); template<__in_vector InVec> auto vector_abs_sum(InVec v) -> /* voir description */; template<class ExecutionPolicy, __in_vector InVec> auto vector_abs_sum(ExecutionPolicy&& exec, InVec v) -> /* voir description */; // index de la valeur absolue maximale des éléments du vecteur template<__in_vector InVec> typename InVec::extents_type vector_idx_abs_max(InVec v); template<class ExecutionPolicy, __in_vector InVec> typename InVec::extents_type vector_idx_abs_max(ExecutionPolicy&& exec, InVec v); // Norme de Frobenius d'une matrice template<__in_matrix InMat, class Scalar> Scalar matrix_frob_norm(InMat A, Scalar init); template<class ExecutionPolicy, __in_matrix InMat, class Scalar> Scalar matrix_frob_norm(ExecutionPolicy&& exec, InMat A, Scalar init); template<__in_matrix InMat> auto matrix_frob_norm(InMat A) -> /* voir description */; template<class ExecutionPolicy, __in_matrix InMat> auto matrix_frob_norm(ExecutionPolicy&& exec, InMat A) -> /* voir description */; // Norme un d'une matrice template<__in_matrix InMat, class Scalar> Scalar matrix_one_norm(InMat A, Scalar init); template<class ExecutionPolicy, __in_matrix InMat, class Scalar> Scalar matrix_one_norm(ExecutionPolicy&& exec, InMat A, Scalar init); template<__in_matrix InMat> auto matrix_one_norm(InMat A) -> /* voir description */; template<class ExecutionPolicy, __in_matrix InMat> auto matrix_one_norm(ExecutionPolicy&& exec, InMat A) -> /* voir description */; // Norme infinie d'une matrice template<__in_matrix InMat, class Scalar> Scalar matrix_inf_norm(InMat A, Scalar init); template<class ExecutionPolicy, __in_matrix InMat, class Scalar> Scalar matrix_inf_norm(ExecutionPolicy&& exec, InMat A, Scalar init); template<__in_matrix InMat> auto matrix_inf_norm(InMat A) -> /* voir description */; template<class ExecutionPolicy, __in_matrix InMat> auto matrix_inf_norm(ExecutionPolicy&& exec, InMat A) -> /* voir description */; // produit matrice-vecteur général template<__in_matrix InMat, __in_vector InVec, __out_vector OutVec> void matrix_vector_product(InMat A, InVec x, OutVec y); template<class ExecutionPolicy, __in_matrix InMat, __in_vector InVec, __out_vector OutVec> void matrix_vector_product(ExecutionPolicy&& exec, InMat A, InVec x, OutVec y); template<__in_matrix InMat, __in_vector InVec1, __in_vector InVec2, __out_vector OutVec> void matrix_vector_product(InMat A, InVec1 x, InVec2 y, OutVec z); template<class ExecutionPolicy, __in_matrix InMat, __in_vector InVec1, __in_vector InVec2, __out_vector OutVec> void matrix_vector_product(ExecutionPolicy&& exec, InMat A, InVec1 x, InVec2 y, OutVec z); // produit matrice-vecteur symétrique template<__in_matrix InMat, class Triangle, __in_vector InVec, __out_vector OutVec> void symmetric_matrix_vector_product(InMat A, Triangle t, InVec x, OutVec y); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, __in_vector InVec, __out_vector OutVec> void symmetric_matrix_vector_product(ExecutionPolicy&& exec, InMat A, Triangle t, InVec x, OutVec y); template<__in_matrix InMat, class Triangle, __in_vector InVec1, __in_vector InVec2, __out_vector OutVec> void symmetric_matrix_vector_product(InMat A, Triangle t, InVec1 x, InVec2 y, OutVec z); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, __in_vector InVec1, __in_vector InVec2, __out_vector OutVec> void symmetric_matrix_vector_product(ExecutionPolicy&& exec, InMat A, Triangle t, InVec1 x, InVec2 y, OutVec z); // Produit matrice-vecteur hermitien template<__in_matrix InMat, class Triangle, __in_vector InVec, __out_vector OutVec> void hermitian_matrix_vector_product(InMat A, Triangle t, InVec x, OutVec y); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, __in_vector InVec, __out_vector OutVec> void hermitian_matrix_vector_product(ExecutionPolicy&& exec, InMat A, Triangle t, InVec x, OutVec y); template<__in_matrix InMat, class Triangle, __in_vector InVec1, __in_vector InVec2, __out_vector OutVec> void hermitian_matrix_vector_product(InMat A, Triangle t, InVec1 x, InVec2 y, OutVec z); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, __in_vector InVec1, __in_vector InVec2, __out_vector OutVec> void hermitian_matrix_vector_product(ExecutionPolicy&& exec, InMat A, Triangle t, InVec1 x, InVec2 y, OutVec z); // Produit matrice-vecteur triangulaire // Produit matrice-vecteur triangulaire par écrasement template<__in_matrix InMat, class Triangle, class DiagonalStorage, __in_vector InVec, __out_vector OutVec> void triangular_matrix_vector_product(InMat A, Triangle t, DiagonalStorage d, InVec x, OutVec y); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, class DiagonalStorage, __in_vector InVec, __out_vector OutVec> void triangular_matrix_vector_product(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InVec x, OutVec y); // Produit matrice-vecteur triangulaire en place template<__in_matrix InMat, class Triangle, class DiagonalStorage, __inout_vector InOutVec> void triangular_matrix_vector_product(InMat A, Triangle t, DiagonalStorage d, InOutVec y); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, class DiagonalStorage, __inout_vector InOutVec> void triangular_matrix_vector_product(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InOutVec y); // Mise à jour du produit matrice-vecteur triangulaire template<__in_matrix InMat, class Triangle, class DiagonalStorage, __in_vector InVec1, __in_vector InVec2, __out_vector OutVec> void triangular_matrix_vector_product(InMat A, Triangle t, DiagonalStorage d, InVec1 x, InVec2 y, OutVec z); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, class DiagonalStorage, __in_vector InVec1, __in_vector InVec2, __out_vector OutVec> void triangular_matrix_vector_product(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InVec1 x, InVec2 y, OutVec z); // Résoudre un système linéaire triangulaire, non en place template<__in_matrix InMat, class Triangle, class DiagonalStorage, __in_vector InVec, __out_vector OutVec, class BinaryDivideOp> void triangular_matrix_vector_solve(InMat A, Triangle t, DiagonalStorage d, InVec b, OutVec x, BinaryDivideOp divide); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, class DiagonalStorage, __in_vector InVec, __out_vector OutVec, class BinaryDivideOp> void triangular_matrix_vector_solve(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InVec b, OutVec x, BinaryDivideOp divide); template<__in_matrix InMat, class Triangle, class DiagonalStorage, __in_vector InVec, __out_vector OutVec> void triangular_matrix_vector_solve(InMat A, Triangle t, DiagonalStorage d, InVec b, OutVec x); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, class DiagonalStorage, __in_vector InVec, __out_vector OutVec> void triangular_matrix_vector_solve(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InVec b, OutVec x); // Résoudre un système linéaire triangulaire, en place template<__in_matrix InMat, class Triangle, class DiagonalStorage, __inout_vector InOutVec, class BinaryDivideOp> void triangular_matrix_vector_solve(InMat A, Triangle t, DiagonalStorage d, InOutVec b, BinaryDivideOp divide); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, class DiagonalStorage, __inout_vector InOutVec, class BinaryDivideOp> void triangular_matrix_vector_solve(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InOutVec b, BinaryDivideOp divide); template<__in_matrix InMat, class Triangle, class DiagonalStorage, __inout_vector InOutVec> void triangular_matrix_vector_solve(InMat A, Triangle t, DiagonalStorage d, InOutVec b); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, class DiagonalStorage, __inout_vector InOutVec> void triangular_matrix_vector_solve(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InOutVec b); // mise à jour de matrice de rang 1 non conjuguée template<__in_vector InVec1, __in_vector InVec2, __inout_matrix InOutMat> void matrix_rank_1_update(InVec1 x, InVec2 y, InOutMat A); template<class ExecutionPolicy, __in_vector InVec1, __in_vector InVec2, __inout_matrix InOutMat> void matrix_rank_1_update(ExecutionPolicy&& exec, InVec1 x, InVec2 y, InOutMat A); // mise à jour de matrice de rang 1 conjuguée template<__in_vector InVec1, __in_vector InVec2, __inout_matrix InOutMat> void matrix_rank_1_update_c(InVec1 x, InVec2 y, InOutMat A); template<class ExecutionPolicy, __in_vector InVec1, __in_vector InVec2, __inout_matrix InOutMat> void matrix_rank_1_update_c(ExecutionPolicy&& exec, InVec1 x, InVec2 y, InOutMat A); // mise à jour symétrique de matrice de rang 1 template<__in_vector InVec, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_1_update(InVec x, InOutMat A, Triangle t); template<class ExecutionPolicy, __in_vector InVec, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_1_update(ExecutionPolicy&& exec, InVec x, InOutMat A, Triangle t); template<class Scalar, __in_vector InVec, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_1_update(Scalar alpha, InVec x, InOutMat A, Triangle t); template<class ExecutionPolicy, class Scalar, __in_vector InVec, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_1_update(ExecutionPolicy&& exec, Scalar alpha, InVec x, InOutMat A, Triangle t); // Mise à jour de matrice hermitienne de rang 1 template<__in_vector InVec, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_1_update(InVec x, InOutMat A, Triangle t); template<class ExecutionPolicy, __in_vector InVec, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_1_update(ExecutionPolicy&& exec, InVec x, InOutMat A, Triangle t); template<class Scalar, __in_vector InVec, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_1_update(Scalar alpha, InVec x, InOutMat A, Triangle t); template<class ExecutionPolicy, class Scalar, __in_vector InVec, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_1_update(ExecutionPolicy&& exec, Scalar alpha, InVec x, InOutMat A, Triangle t); // mise à jour symétrique de matrice de rang 2 template<__in_vector InVec1, __in_vector InVec2, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_2_update(InVec1 x, InVec2 y, InOutMat A, Triangle t); template<class ExecutionPolicy, __in_vector InVec1, __in_vector InVec2, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_2_update(ExecutionPolicy&& exec, InVec1 x, InVec2 y, InOutMat A, Triangle t); // Mise à jour de matrice hermitienne de rang 2 template<__in_vector InVec1, __in_vector InVec2, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_2_update(InVec1 x, InVec2 y, InOutMat A, Triangle t); template<class ExecutionPolicy, __in_vector InVec1, __in_vector InVec2, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_2_update(ExecutionPolicy&& exec, InVec1 x, InVec2 y, InOutMat A, Triangle t); // produit général matrice-matrice template<__in_matrix InMat1, __in_matrix InMat2, __out_matrix OutMat> void matrix_product(InMat1 A, InMat2 B, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, __in_matrix InMat2, __out_matrix OutMat> void matrix_product(ExecutionPolicy&& exec, InMat1 A, InMat2 B, OutMat C); template<__in_matrix InMat1, __in_matrix InMat2, __in_matrix InMat3, __out_matrix OutMat> void matrix_product(InMat1 A, InMat2 B, InMat3 E, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, __in_matrix InMat2, __in_matrix InMat3, __out_matrix OutMat> void matrix_product(ExecutionPolicy&& exec, InMat1 A, InMat2 B, InMat3 E, OutMat C); // produit matrice-matrice symétrique // produit matriciel gauche symétrique de réécriture template<__in_matrix InMat1, class Triangle, __in_matrix InMat2, __out_matrix OutMat> void symmetric_matrix_product(InMat1 A, Triangle t, InMat2 B, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, __in_matrix InMat2, __out_matrix OutMat> void symmetric_matrix_product(ExecutionPolicy&& exec, InMat1 A, Triangle t, InMat2 B, OutMat C); // écrasement du produit matriciel droit symétrique template<__in_matrix InMat1, __in_matrix InMat2, class Triangle, __out_matrix OutMat> void symmetric_matrix_product(InMat1 B, InMat2 A, Triangle t, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, __in_matrix InMat2, class Triangle, __out_matrix OutMat> void symmetric_matrix_product(ExecutionPolicy&& exec, InMat1 B, InMat2 A, Triangle t, OutMat C); // mise à jour du produit matriciel gauche symétrique template<__in_matrix InMat1, class Triangle, __in_matrix InMat2, __in_matrix InMat3, __out_matrix OutMat> void symmetric_matrix_product(InMat1 A, Triangle t, InMat2 B, InMat3 E, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, __in_matrix InMat2, __in_matrix InMat3, __out_matrix OutMat> void symmetric_matrix_product(ExecutionPolicy&& exec, InMat1 A, Triangle t, InMat2 B, InMat3 E, OutMat C); // mise à jour du produit matriciel droit symétrique template<__in_matrix InMat1, __in_matrix InMat2, class Triangle, __in_matrix InMat3, __out_matrix OutMat> void symmetric_matrix_product(InMat1 B, InMat2 A, Triangle t, InMat3 E, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, __in_matrix InMat2, class Triangle, __in_matrix InMat3, __out_matrix OutMat> void symmetric_matrix_product(ExecutionPolicy&& exec, InMat1 B, InMat2 A, Triangle t, InMat3 E, OutMat C); // Produit matrice-matrice hermitien // écrasement du produit matriciel gauche de matrice hermitienne template<__in_matrix InMat1, class Triangle, __in_matrix InMat2, __out_matrix OutMat> void hermitian_matrix_product(InMat1 A, Triangle t, InMat2 B, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, __in_matrix InMat2, __out_matrix OutMat> void hermitian_matrix_product(ExecutionPolicy&& exec, InMat1 A, Triangle t, InMat2 B, OutMat C); // écrasement du produit matriciel droit hermitien template<__in_matrix InMat1, __in_matrix InMat2, class Triangle, __out_matrix OutMat> void hermitian_matrix_product(InMat1 B, InMat2 A, Triangle t, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, __in_matrix InMat2, class Triangle, __out_matrix OutMat> void hermitian_matrix_product(ExecutionPolicy&& exec, InMat1 B, InMat2 A, Triangle t, OutMat C); // mise à jour du produit matriciel gauche avec matrice hermitienne template<__in_matrix InMat1, class Triangle, __in_matrix InMat2, __in_matrix InMat3, __out_matrix OutMat> void hermitian_matrix_product(InMat1 A, Triangle t, InMat2 B, InMat3 E, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, __in_matrix InMat2, __in_matrix InMat3, __out_matrix OutMat> void hermitian_matrix_product(ExecutionPolicy&& exec, InMat1 A, Triangle t, InMat2 B, InMat3 E, OutMat C); // mise à jour du produit matriciel droit hermitien template<__in_matrix InMat1, __in_matrix InMat2, class Triangle, __in_matrix InMat3, __out_matrix OutMat> void hermitian_matrix_product(InMat1 B, InMat2 A, Triangle t, InMat3 E, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, __in_matrix InMat2, class Triangle, __in_matrix InMat3, __out_matrix OutMat> void hermitian_matrix_product(ExecutionPolicy&& exec, InMat1 B, InMat2 A, Triangle t, InMat3 E, OutMat C); // produit matrice-matrice triangulaire // produit matriciel gauche avec matrice triangulaire en écrasement template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __out_matrix OutMat> void triangular_matrix_product(InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __out_matrix OutMat> void triangular_matrix_product(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat C); template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat> void triangular_matrix_left_product(InMat1 A, Triangle t, DiagonalStorage d, InOutMat C); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat> void triangular_matrix_left_product(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InOutMat C); // écrasement du produit matrice-matrice triangulaire droit template<__in_matrix InMat1, __in_matrix InMat2, class Triangle, class DiagonalStorage, __out_matrix OutMat> void triangular_matrix_product(InMat1 B, InMat2 A, Triangle t, DiagonalStorage d, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, __in_matrix InMat2, class Triangle, class DiagonalStorage, __out_matrix OutMat> void triangular_matrix_product(ExecutionPolicy&& exec, InMat1 B, InMat2 A, Triangle t, DiagonalStorage d, OutMat C); template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat> void triangular_matrix_right_product(InMat1 A, Triangle t, DiagonalStorage d, InOutMat C); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat> void triangular_matrix_right_product(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InOutMat C); // mise à jour du produit matriciel triangulaire gauche template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __in_matrix InMat3, __out_matrix OutMat> void triangular_matrix_product(InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, InMat3 E, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __in_matrix InMat3, __out_matrix OutMat> void triangular_matrix_product(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, InMat3 E, OutMat C); // mise à jour du produit matriciel droit triangulaire template<__in_matrix InMat1, __in_matrix InMat2, class Triangle, class DiagonalStorage, __in_matrix InMat3, __out_matrix OutMat> void triangular_matrix_product(InMat1 B, InMat2 A, Triangle t, DiagonalStorage d, InMat3 E, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, __in_matrix InMat2, class Triangle, class DiagonalStorage, __in_matrix InMat3, __out_matrix OutMat> void triangular_matrix_product(ExecutionPolicy&& exec, InMat1 B, InMat2 A, Triangle t, DiagonalStorage d, InMat3 E, OutMat C); // mise à jour de matrice symétrique de rang k template<class Scalar, __in_matrix InMat1, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_k_update(Scalar alpha, InMat1 A, InOutMat C, Triangle t); template<class Scalar, class ExecutionPolicy, ___in_matrix InMat1, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_k_update(ExecutionPolicy&& exec, Scalar alpha, InMat1 A, InOutMat C, Triangle t); template<__in_matrix InMat1, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_k_update(InMat1 A, InOutMat C, Triangle t); template<class ExecutionPolicy, __in_matrix InMat1, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_k_update(ExecutionPolicy&& exec, InMat1 A, InOutMat C, Triangle t); // mise à jour de matrice hermitienne de rang k template<class Scalar, __in_matrix InMat1, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_k_update(Scalar alpha, InMat1 A, InOutMat C, Triangle t); template<class ExecutionPolicy, class Scalar, __in_matrix InMat1, __possibly_packed_inout_matrix InOutMat, class Triangle void hermitian_matrix_rank_k_update(ExecutionPolicy&& exec, Scalar alpha, InMat1 A, InOutMat C, Triangle t); template<__in_matrix InMat1, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_k_update(InMat1 A, InOutMat C, Triangle t); template<class ExecutionPolicy, __in_matrix InMat1, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_k_update(ExecutionPolicy&& exec, InMat1 A, InOutMat C, Triangle t); // mise à jour de matrice symétrique de rang-2k template<__in_matrix InMat1, __in_matrix InMat2, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_2k_update(InMat1 A, InMat2 B, InOutMat C, Triangle t); template<class ExecutionPolicy, __in_matrix InMat1, __in_matrix InMat2, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_2k_update(ExecutionPolicy&& exec, InMat1 A, InMat2 B, InOutMat C, Triangle t); // mise à jour de matrice hermitienne de rang 2k template<__in_matrix InMat1, __in_matrix InMat2, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_2k_update(InMat1 A, InMat2 B, InOutMat C, Triangle t); template<class ExecutionPolicy, __in_matrix InMat1, __in_matrix InMat2, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_2k_update(ExecutionPolicy&& exec, InMat1 A, InMat2 B, InOutMat C, Triangle t); // résoudre plusieurs systèmes linéaires triangulaires // avec une matrice triangulaire à gauche template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __out_matrix OutMat, class BinaryDivideOp> void triangular_matrix_matrix_left_solve(InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat X, BinaryDivideOp divide); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __out_matrix OutMat, class BinaryDivideOp> void triangular_matrix_matrix_left_solve(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat X, BinaryDivideOp divide); template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat, class BinaryDivideOp> void triangular_matrix_matrix_left_solve(InMat1 A, Triangle t, DiagonalStorage d, InOutMat B, BinaryDivideOp divide); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat, class BinaryDivideOp> void triangular_matrix_matrix_left_solve(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InOutMat B, BinaryDivideOp divide); template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __out_matrix OutMat> void triangular_matrix_matrix_left_solve(InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat X); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __out_matrix OutMat> void triangular_matrix_matrix_left_solve(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat X); template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat> void triangular_matrix_matrix_left_solve(InMat1 A, Triangle t, DiagonalStorage d, InOutMat B); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat> void triangular_matrix_matrix_left_solve(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InOutMat B); // résoudre plusieurs systèmes linéaires triangulaires // avec matrice triangulaire à droite template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __out_matrix OutMat, class BinaryDivideOp> void triangular_matrix_matrix_right_solve(InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat X, BinaryDivideOp divide); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __out_matrix OutMat, class BinaryDivideOp> void triangular_matrix_matrix_right_solve(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat X, BinaryDivideOp divide); template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat, class BinaryDivideOp> void triangular_matrix_matrix_right_solve(InMat1 A, Triangle t, DiagonalStorage d, InOutMat B, BinaryDivideOp divide); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat, class BinaryDivideOp> void triangular_matrix_matrix_right_solve(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InOutMat B, BinaryDivideOp divide)); template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __out_matrix OutMat> void triangular_matrix_matrix_right_solve(InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat X); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __out_matrix OutMat> void triangular_matrix_matrix_right_solve(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat X); template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat> void triangular_matrix_matrix_right_solve(InMat1 A, Triangle t, DiagonalStorage d, InOutMat B); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat> void triangular_matrix_matrix_right_solve(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InOutMat B); }
Étiquettes
namespace std::linalg { struct column_major_t { explicit column_major_t() = default; }; inline constexpr column_major_t column_major = { }; struct row_major_t { explicit row_major_t() = default; }; inline constexpr row_major_t row_major = { }; struct upper_triangle_t { explicit upper_triangle_t() = default; }; inline constexpr upper_triangle_t upper_triangle = { }; struct lower_triangle_t { explicit lower_triangle_t() = default; }; inline constexpr lower_triangle_t lower_triangle = { }; struct implicit_unit_diagonal_t { explicit implicit_unit_diagonal_t() = default; }; inline constexpr implicit_unit_diagonal_t implicit_unit_diagonal = { }; struct explicit_diagonal_t { explicit explicit_diagonal_t() = default; }; inline constexpr explicit_diagonal_t explicit_diagonal = { }; }
` et contient des termes spécifiques au C++ qui doivent être préservés selon les instructions. Seul le texte environnant (s'il y en avait) aurait été traduit en français.
Modèle de classe std::linalg::layout_blas_packed
namespace std::linalg { template<class Triangle, class StorageOrder> class layout_blas_packed { public: using triangle_type = Triangle; using storage_order_type = StorageOrder; template<class Extents> struct mapping { public: using extents_type = Extents; using index_type = typename extents_type::index_type; using size_type = typename extents_type::size_type; using rank_type = typename extents_type::rank_type; using layout_type = layout_blas_packed<Triangle, StorageOrder>; private: Extents __the_extents{}; // exposition uniquement public: constexpr mapping() noexcept = default; constexpr mapping(const mapping&) noexcept = default; constexpr mapping(const extents_type& e) noexcept; template<class OtherExtents> constexpr explicit(!is_convertible_v<OtherExtents, extents_type>) mapping(const mapping<OtherExtents>& other) noexcept; constexpr mapping& operator=(const mapping&) noexcept = default; constexpr extents_type extents() const noexcept { return __the_extents; } constexpr size_type required_span_size() const noexcept; template<class Index0, class Index1> constexpr index_type operator() (Index0 ind0, Index1 ind1) const noexcept; static constexpr bool is_always_unique() { return (extents_type::static_extent(0) != dynamic_extent && extents_type::static_extent(0) < 2) || (extents_type::static_extent(1) != dynamic_extent && extents_type::static_extent(1) < 2); } static constexpr bool is_always_exhaustive() { return true; } static constexpr bool is_always_strided() { return is_always_unique(); } constexpr bool is_unique() const noexcept { return __the_extents.extent(0) < 2; } constexpr bool is_exhaustive() const noexcept { return true; } constexpr bool is_strided() const noexcept { return __the_extents.extent(0) < 2; } constexpr index_type stride(rank_type) const noexcept; template<class OtherExtents> friend constexpr bool operator==(const mapping&, const mapping<OtherExtents>&) noexcept; }; }; }
Modèle de classe std::linalg::scaled_accessor
namespace std::linalg { template<class ScalingFactor, class NestedAccessor> class scaled_accessor { public: using element_type = add_const_t<decltype(declval<ScalingFactor>() * declval<NestedAccessor::element_type>())>; using reference = remove_const_t<element_type>; using data_handle_type = NestedAccessor::data_handle_type; using offset_policy = scaled_accessor<ScalingFactor, NestedAccessor::offset_policy>; constexpr scaled_accessor() = default; template<class OtherNestedAccessor> explicit(!is_convertible_v<OtherNestedAccessor, NestedAccessor>) constexpr scaled_accessor(const scaled_accessor<ScalingFactor, OtherNestedAccessor>&); constexpr scaled_accessor(const ScalingFactor& s, const Accessor& a); constexpr reference access(data_handle_type p, size_t i) const noexcept; constexpr offset_policy::data_handle_type offset(data_handle_type p, size_t i) const noexcept; constexpr const ScalingFactor& scaling_factor() const noexcept { return __scaling_factor; } constexpr const NestedAccessor& nested_accessor() const noexcept { return __nested_accessor; } private: ScalingFactor __scaling_factor; // exposition uniquement NestedAccessor __nested_accessor; // exposition uniquement }; }
Modèle de classe std::linalg::conjugated_accessor
namespace std::linalg { template<class NestedAccessor> class conjugated_accessor { private: NestedAccessor __nested_accessor; // exposition uniquement public: using element_type = add_const_t<decltype(/*conj-si-nécessaire*/(declval<NestedAccessor::element_type>()))>; using reference = remove_const_t<element_type>; using data_handle_type = typename NestedAccessor::data_handle_type; using offset_policy = conjugated_accessor<NestedAccessor::offset_policy>; constexpr conjugated_accessor() = default; template<class OtherNestedAccessor> explicit(!is_convertible_v<OtherNestedAccessor, NestedAccessor>) constexpr conjugated_accessor(const conjugated_accessor<OtherNestedAccessor>& other); constexpr reference access(data_handle_type p, size_t i) const; constexpr typename offset_policy::data_handle_type offset(data_handle_type p, size_t i) const; constexpr const NestedAccessor& nested_accessor() const noexcept { return __nested_accessor; } }; }
Modèle de classe std::linalg::layout_transpose
namespace std::linalg { template<class InputExtents> using __transpose_extents_t = /* voir description */; // exposition uniquement template<class Layout> class layout_transpose { public: using nested_layout_type = Layout; template<class Extents> struct mapping { private: using __nested_mapping_type = typename Layout::template mapping< __transpose_extents_t<Extents>>; // exposition uniquement __nested_mapping_type __nested_mapping; // exposition uniquement extents_type __extents; // exposition uniquement public: using extents_type = Extents; using index_type = typename extents_type::index_type; using size_type = typename extents_type::size_type; using rank_type = typename extents_type::rank_type; using layout_type = layout_transpose; constexpr explicit mapping(const __nested_mapping_type& map); constexpr const extents_type& extents() const noexcept { return __extents; } constexpr index_type required_span_size() const { return __nested_mapping.required_span_size(); } template<class Index0, class Index1> constexpr index_type operator()(Index0 ind0, Index1 ind1) const { return __nested_mapping(ind1, ind0); } constexpr const __nested_mapping_type& nested_mapping() const noexcept { return __nested_mapping; } static constexpr bool is_always_unique() noexcept { return __nested_mapping_type::is_always_unique(); } static constexpr bool is_always_exhaustive() noexcept { return __nested_mapping_type::is_always_exhaustive(); } static constexpr bool is_always_strided() noexcept { return __nested_mapping_type::is_always_strided(); } constexpr bool is_unique() const { return __nested_mapping.is_unique(); } constexpr bool is_exhaustive() const { return __nested_mapping.is_exhaustive(); } constexpr bool is_strided() const { return __nested_mapping.is_strided(); } constexpr index_type stride(size_t r) const; template<class OtherExtents> friend constexpr bool operator==(const mapping& x, const mapping<OtherExtents>& y); }; }; }
Concepts et traits auxiliaires
namespace std::linalg { template<class T> struct __is_mdspan : false_type {}; // exposition uniquement template<class ElementType, class Extents, class Layout, class Accessor> struct __is_mdspan<mdspan<ElementType, Extents, Layout, Accessor>> : true_type {}; // exposition uniquement template<class T> concept __in_vector = // exposition uniquement __is_mdspan<T>::value && T::rang() == 1; template<class T> concept __out_vector = // exposition uniquement __is_mdspan<T>::value && T::rang() == 1 && is_assignable_v<typename T::référence, typename T::element_type> && T::is_always_unique(); template<class T> concept __inout_vector = // exposition uniquement __is_mdspan<T>::value && T::rang() == 1 && is_assignable_v<typename T::référence, typename T::element_type> && T::is_always_unique(); template<class T> concept __in_matrix = // exposition uniquement __is_mdspan<T>::value && T::rang() == 2; template<class T> concept __out_matrix = // exposition uniquement __is_mdspan<T>::value && T::rang() == 2 && is_assignable_v<typename T::référence, typename T::element_type> && T::is_always_unique(); template<class T> concept __inout_matrix = // exposition uniquement __is_mdspan<T>::value && T::rang() == 2 && is_assignable_v<typename T::référence, typename T::element_type> && T::is_always_unique(); template<class T> concept __possibly_packed_inout_matrix = // exposition uniquement __is_mdspan<T>::value && T::rang() == 2 && is_assignable_v<typename T::référence, typename T::element_type> && (T::is_always_unique() || is_same_v<typename T::layout_type, layout_blas_packed>); template<class T> concept __in_object = // exposition uniquement __is_mdspan<T>::value && (T::rang() == 1 || T::rang() == 2); template<class T> concept __out_object = // exposition uniquement __is_mdspan<T>::value && (T::rang() == 1 || T::rang() == 2) && is_assignable_v<typename T::référence, typename T::element_type> && T::is_always_unique(); template<class T> concept __inout_object = // exposition uniquement __is_mdspan<T>::value && (T::rang() == 1 || T::rang() == 2) && is_assignable_v<typename T::référence, typename T::element_type> && T::is_always_unique(); }