Namespaces
Variants

std::ranges:: fold_right

From cppreference.net
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy , ranges::sort , ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
Modifying sequence operations
Copy operations
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17) (C++11)
(C++20) (C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Permutation operations
Fold operations
Operations on uninitialized storage
Return types
Défini dans l'en-tête <algorithm>
Signature d'appel
(1)
template < std:: bidirectional_iterator I, std:: sentinel_for < I > S, class T,

/* indirectement-pliable-binaire-droite */ < T, I > F >

constexpr auto fold_right ( I first, S last, T init, F f ) ;
(depuis C++23)
(jusqu'à C++26)
template < std:: bidirectional_iterator I, std:: sentinel_for < I > S,

class T = std:: iter_value_t < I > ,
/* indirectement-pliable-binaire-droite */ < T, I > F >

constexpr auto fold_right ( I first, S last, T init, F f ) ;
(depuis C++26)
(2)
template < ranges:: bidirectional_range R, class T,

/* indirectement-pliable-binaire-droite */
< T, ranges:: iterator_t < R >> F >

constexpr auto fold_right ( R && r, T init, F f ) ;
(depuis C++23)
(jusqu'à C++26)
template < ranges:: bidirectional_range R, class T = ranges:: range_value_t < R > ,

/* indirectement-pliable-binaire-droite */
< T, ranges:: iterator_t < R >> F >

constexpr auto fold_right ( R && r, T init, F f ) ;
(depuis C++26)
Concepts auxiliaires
template < class F, class T, class I >
concept /* indirectly-binary-left-foldable */ = /* see description */ ;
(3) ( exposition only* )
template < class F, class T, class I >
concept /* indirectly-binary-right-foldable */ = /* see description */ ;
(4) ( exposition only* )

Plie à droite les éléments de la plage donnée, c'est-à-dire retourne le résultat de l'évaluation de l'expression en chaîne :
f(x 1 , f(x 2 , ...f(x n , init))) , où x 1 , x 2 , ..., x n sont les éléments de la plage.

Informellement, ranges::fold_right se comporte comme ranges:: fold_left ( views:: reverse ( r ) , init, /*flipped*/ ( f ) ) .

Le comportement est indéfini si [ first , last ) n'est pas une plage valide.

1) La plage est [ first , last ) .
2) Identique à (1) , sauf qu'il utilise r comme plage, comme s'il utilisait ranges:: begin ( r ) comme first et ranges:: end ( r ) comme last .
3) Équivalent à :
Concepts auxiliaires
template < class F, class T, class I, class U >

concept /*indirectly-binary-left-foldable-impl*/ =
std:: movable < T > &&
std:: movable < U > &&
std:: convertible_to < T, U > &&
std:: invocable < F & , U, std:: iter_reference_t < I >> &&
std:: assignable_from < U & ,

std:: invoke_result_t < F & , U, std:: iter_reference_t < I >>> ;
(3A) ( exposition uniquement* )
template < class F, class T, class I >

concept /*indirectly-binary-left-foldable*/ =
std:: copy_constructible < F > &&
std:: indirectly_readable < I > &&
std:: invocable < F & , T, std:: iter_reference_t < I >> &&
std:: convertible_to < std:: invoke_result_t < F & , T, std:: iter_reference_t < I >> ,
std:: decay_t < std:: invoke_result_t < F & , T, std:: iter_reference_t < I >>>> &&
/*indirectly-binary-left-foldable-impl*/ < F, T, I,

std:: decay_t < std:: invoke_result_t < F & , T, std:: iter_reference_t < I >>>> ;
(3B) ( exposition uniquement* )
4) Équivalent à :
Concepts auxiliaires
template < class F, class T, class I >

concept /*indirectly-binary-right-foldable*/ =

/*indirectly-binary-left-foldable*/ < /*flipped*/ < F > , T, I > ;
(4A) ( exposition uniquement* )
Modèles de classes auxiliaires
template < class F >

class /*flipped*/
{
F f ; // exposition only
public :
template < class T, class U >
requires std:: invocable < F & , U, T >
std:: invoke_result_t < F & , U, T > operator ( ) ( T && , U && ) ;

} ;
(4B) ( exposition uniquement* )

Les entités de type fonction décrites sur cette page sont des algorithm function objects (informellement appelées niebloids ), c'est-à-dire :

Table des matières

Paramètres

first, last - la paire itérateur-sentinelle définissant la plage des éléments à plier
r - la plage d'éléments à plier
init - la valeur initiale du pli
f - l'objet fonction binaire

Valeur de retour

Un objet de type U qui contient le résultat du pliage droit de la plage donnée sur f , où U est équivalent à std:: decay_t < std:: invoke_result_t < F & , std:: iter_reference_t < I > , T >> ; .

Si la plage est vide, U ( std :: move ( init ) ) est retourné.

Implémentations possibles

struct fold_right_fn
{
    template<std::bidirectional_iterator I, std::sentinel_for<I> S,
             class T = std::iter_value_t<I>,
             /* indirectement-pliable-binaire-droite */<T, I> F>
    constexpr auto operator()(I first, S last, T init, F f) const
    {
        using U = std::decay_t<std::invoke_result_t<F&, std::iter_reference_t<I>, T>>;
        if (first == last)
            return U(std::move(init));
        I tail = ranges::next(first, last);
        U accum = std::invoke(f, *--tail, std::move(init));
        while (first != tail)
            accum = std::invoke(f, *--tail, std::move(accum));
        return accum;
    }
    template<ranges::bidirectional_range R, class T = ranges::range_value_t<R>,
             /* indirectement-pliable-binaire-droite */<T, ranges::iterator_t<R>> F>
    constexpr auto operator()(R&& r, T init, F f) const
    {
        return (*this)(ranges::begin(r), ranges::end(r), std::move(init), std::ref(f));
    }
};
inline constexpr fold_right_fn fold_right;

Complexité

Exactement ranges:: distance ( first, last ) applications de l'objet fonction f .

Notes

Le tableau suivant compare tous les algorithmes de pliage contraint :

Modèle de fonction de pliage Commence par Valeur initiale Type de retour
ranges:: fold_left gauche init U
ranges:: fold_left_first gauche premier élément std:: optional < U >
ranges :: fold_right droite init U
ranges:: fold_right_last droite dernier élément std:: optional < U >
ranges:: fold_left_with_iter gauche init

(1) ranges:: in_value_result < I, U >

(2) ranges:: in_value_result < BR, U > ,

BR est ranges:: borrowed_iterator_t < R >

ranges:: fold_left_first_with_iter gauche premier élément

(1) ranges:: in_value_result < I, std:: optional < U >>

(2) ranges:: in_value_result < BR, std:: optional < U >>

BR est ranges:: borrowed_iterator_t < R >

Macro de test de fonctionnalité Valeur Norme Fonctionnalité
__cpp_lib_ranges_fold 202207L (C++23) std::ranges algorithmes de pliage
__cpp_lib_algorithm_default_value_type 202403L (C++26) Initialisation par liste pour les algorithmes ( 1,2 )

Exemple

#include <algorithm>
#include <complex>
#include <functional>
#include <iostream>
#include <ranges>
#include <string>
#include <utility>
#include <vector>
using namespace std::literals;
namespace ranges = std::ranges;
int main()
{
    auto v = {1, 2, 3, 4, 5, 6, 7, 8};
    std::vector<std::string> vs{"A", "B", "C", "D"};
    auto r1 = ranges::fold_right(v.begin(), v.end(), 6, std::plus<>()); // (1)
    std::cout << "r1: " << r1 << '\n';
    auto r2 = ranges::fold_right(vs, "!"s, std::plus<>()); // (2)
    std::cout << "r2: " << r2 << '\n';
    // Utiliser un objet fonction défini par le programme (expression lambda) :
    std::string r3 = ranges::fold_right
    (
        v, "A", [](int x, std::string s) { return s + ':' + std::to_string(x); }
    );
    std::cout << "r3: " << r3 << '\n';
    // Obtenir le produit des std::pair::second de toutes les paires dans le vecteur :
    std::vector<std::pair<char, float>> data{{'A', 2.f}, {'B', 3.f}, {'C', 3.5f}};
    float r4 = ranges::fold_right
    (
        data | ranges::views::values, 2.0f, std::multiplies<>()
    );
    std::cout << "r4: " << r4 << '\n';
    using CD = std::complex<double>;
    std::vector<CD> nums{{1, 1}, {2, 0}, {3, 0}};
    #ifdef __cpp_lib_algorithm_default_value_type
        auto r5 = ranges::fold_right(nums, {7, 0}, std::multiplies{});
    #else
        auto r5 = ranges::fold_right(nums, CD{7, 0}, std::multiplies{});
    #endif
    std::cout << "r5: " << r5 << '\n';
}

Sortie :

r1: 42
r2: ABCD!
r3: A:8:7:6:5:4:3:2:1
r4: 42
r5: (42,42)

Références

  • Norme C++23 (ISO/IEC 14882:2024) :
  • 27.6.18 Pliage [alg.fold]

Voir aussi

plie à droite une plage d'éléments en utilisant le dernier élément comme valeur initiale
(objet fonction algorithme)
plie à gauche une plage d'éléments
(objet fonction algorithme)
plie à gauche une plage d'éléments en utilisant le premier élément comme valeur initiale
(objet fonction algorithme)
plie à gauche une plage d'éléments et retourne une paire (itérateur, valeur)
(objet fonction algorithme)
plie à gauche une plage d'éléments en utilisant le premier élément comme valeur initiale et retourne une paire (itérateur, optional )
(objet fonction algorithme)
additionne ou plie une plage d'éléments
(modèle de fonction)
(C++17)
similaire à std::accumulate , sauf dans le désordre
(modèle de fonction)