Namespaces
Variants

std::ranges:: replace, std::ranges:: replace_if

From cppreference.net
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy , ranges::sort , ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
Modifying sequence operations
Copy operations
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17) (C++11)
(C++20) (C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Permutation operations
Fold operations
Operations on uninitialized storage
Return types
Défini dans l'en-tête <algorithm>
Signature d'appel
(1)
template < std:: input_iterator I, std:: sentinel_for < I > S,

class T1, class T2, class Proj = std:: identity >
requires std:: indirectly_writable < I, const T2 & > &&
std:: indirect_binary_predicate
< ranges:: equal_to , std :: projected < I, Proj > , const T1 * >
constexpr I replace ( I first, S last, const T1 & old_value,

const T2 & new_value, Proj proj = { } ) ;
(depuis C++20)
(jusqu'à C++26)
template < std:: input_iterator I, std:: sentinel_for < I > S,

class Proj = std:: identity ,
class T1 = std :: projected_value_t < I, Proj > , class T2 = T1 >
requires std:: indirectly_writable < I, const T2 & > &&
std:: indirect_binary_predicate
< ranges:: equal_to , std :: projected < I, Proj > , const T1 * >
constexpr I replace ( I first, S last, const T1 & old_value,

const T2 & new_value, Proj proj = { } ) ;
(depuis C++26)
(2)
template < ranges:: input_range R,

class T1, class T2, class Proj = std:: identity >
requires std:: indirectly_writable < ranges:: iterator_t < R > , const T2 & > &&
std:: indirect_binary_predicate
< ranges:: equal_to ,
std :: projected < ranges:: iterator_t < R > , Proj > , const T1 * >
constexpr ranges:: borrowed_iterator_t < R >
replace ( R && r, const T1 & old_value,

const T2 & new_value, Proj proj = { } ) ;
(depuis C++20)
(jusqu'à C++26)
template < ranges:: input_range R,

class Proj = std:: identity ,
class T1 = std :: projected_value_t < ranges:: iterator_t < R > , Proj > ,
class T2 = T1 >
requires std:: indirectly_writable < ranges:: iterator_t < R > , const T2 & > &&
std:: indirect_binary_predicate
< ranges:: equal_to ,
std :: projected < ranges:: iterator_t < R > , Proj > , const T1 * >
constexpr ranges:: borrowed_iterator_t < R >
replace ( R && r, const T1 & old_value,

const T2 & new_value, Proj proj = { } ) ;
(depuis C++26)
(3)
template < std:: input_iterator I, std:: sentinel_for < I > S,

class T, class Proj = std:: identity ,
std:: indirect_unary_predicate < std :: projected < I, Proj >> Pred >
requires std:: indirectly_writable < I, const T & >
constexpr I replace_if ( I first, S last, Pred pred,

const T & new_value, Proj proj = { } ) ;
(depuis C++20)
(jusqu'à C++26)
template < std:: input_iterator I, std:: sentinel_for < I > S,

class Proj = std:: identity ,
class T = std :: projected_value_t < I, Proj > ,
std:: indirect_unary_predicate < std :: projected < I, Proj >> Pred >
requires std:: indirectly_writable < I, const T & >
constexpr I replace_if ( I first, S last, Pred pred,

const T & new_value, Proj proj = { } ) ;
(depuis C++26)
(4)
template < ranges:: input_range R, class T, class Proj = std:: identity ,

std:: indirect_unary_predicate <
std :: projected < ranges:: iterator_t < R > , Proj >> Pred >
requires std:: indirectly_writable < ranges:: iterator_t < R > , const T & >
constexpr ranges:: borrowed_iterator_t < R >

replace_if ( R && r, Pred pred, const T & new_value, Proj proj = { } ) ;
(depuis C++20)
(jusqu'à C++26)
template < ranges:: input_range R, class Proj = std:: identity ,

class T = std :: projected_value_t < ranges:: iterator_t < R > , Proj > ,
std:: indirect_unary_predicate <
std :: projected < ranges:: iterator_t < R > , Proj >> Pred >
requires std:: indirectly_writable < ranges:: iterator_t < R > , const T & >
constexpr ranges:: borrowed_iterator_t < R >

replace_if ( R && r, Pred pred, const T & new_value, Proj proj = { } ) ;
(depuis C++26)

Remplace tous les éléments satisfaisant des critères spécifiques par new_value dans l'intervalle [ first , last ) .

1) Remplace tous les éléments qui sont égaux à old_value , en utilisant std:: invoke ( proj, * i ) == old_value pour comparer.
3) Remplace tous les éléments pour lesquels le prédicat pred s'évalue à true , où l'expression d'évaluation est std:: invoke ( pred, std:: invoke ( proj, * i ) ) .
2,4) Identique à (1,3) , mais utilise r comme plage, comme si on utilisait ranges:: begin ( r ) comme first et ranges:: end ( r ) comme last .

Les entités de type fonction décrites sur cette page sont des objets fonction d'algorithmes (informellement appelés niebloids ), c'est-à-dire :

Table des matières

Paramètres

first, last - la paire itérateur-sentinelle définissant la plage des éléments à traiter
r - la plage d'éléments à traiter
old_value - la valeur des éléments à remplacer
new_value - la valeur à utiliser comme remplacement
pred - prédicat à appliquer aux éléments projetés
proj - projection à appliquer aux éléments

Valeur de retour

Un itérateur égal à last .

Complexité

Exactement ranges:: distance ( first, last ) applications du prédicat correspondant comp et de toute projection proj .

Notes

Parce que l'algorithme prend old_value et new_value par référence, il peut avoir un comportement inattendu si l'un ou l'autre est une référence à un élément de la plage [ first , last ) .

Macro de test de fonctionnalité Valeur Std Fonctionnalité
__cpp_lib_algorithm_default_value_type 202403 (C++26) Initialisation par liste pour les algorithmes ( 1-4 )

Implémentation possible

remplacer (1,2)
struct replace_fn
{
    template<std::input_iterator I, std::sentinel_for<I> S, class Proj = std::identity,
             class T1 = std::projected_value_t<I, Proj>, class T2 = T1>
    requires std::indirectly_writable<I, const T2&> && 
             std::indirect_binary_predicate
                 <ranges::equal_to, std::projected<I, Proj>, const T1*>
    constexpr I operator()(I first, S last, const T1& old_value,
                           const T2& new_value, Proj proj = {}) const
    {
        for (; first != last; ++first)
            if (old_value == std::invoke(proj, *first))
                *first = new_value;
        return first;
    }
    template<ranges::input_range R, class Proj = std::identity
             class T1 = std::projected_value_t<ranges::iterator_t<R>, Proj>,
             class T2 = T1>
    requires std::indirectly_writable<ranges::iterator_t<R>, const T2&> &&
             std::indirect_binary_predicate<ranges::equal_to,
             std::projected<ranges::iterator_t<R>, Proj>, const T1*>
    constexpr ranges::borrowed_iterator_t<R>
        operator()(R&& r, const T1& old_value,
                   const T2& new_value, Proj proj = {}) const
    {
        return (*this)(ranges::begin(r), ranges::end(r), old_value,
                       new_value, std::move(proj));
    }
};
inline constexpr replace_fn replace{};
replace_if (3,4)
struct replace_if_fn
{
    template<std::input_iterator I, std::sentinel_for<I> S,
             class Proj = std::identity, class T = std::projected_value_t<I, Proj>,
             std::indirect_unary_predicate<std::projected<I, Proj>> Pred>
    requires std::indirectly_writable<I, const T&>
    constexpr I operator()(I first, S last, Pred pred,
                           const T& new_value, Proj proj = {}) const
    {
        for (; first != last; ++first)
            if (!!std::invoke(pred, std::invoke(proj, *first)))
                *first = new_value;
        return std::move(first);
    }
    template<ranges::input_range R, class Proj = std::identity,
             class T = std::projected_value_t<ranges::iterator_t<R>, Proj>
             std::indirect_unary_predicate
                 <std::projected<ranges::iterator_t<R>, Proj>> Pred>
    requires std::indirectly_writable<ranges::iterator_t<R>, const T&>
    constexpr ranges::borrowed_iterator_t<R>
        operator()(R&& r, Pred pred, const T& new_value, Proj proj = {}) const
    {
        return (*this)(ranges::begin(r), ranges::end(r), std::move(pred),
                       new_value, std::move(proj));
    }
};
inline constexpr replace_if_fn replace_if{};

Exemple

#include <algorithm>
#include <array>
#include <complex>
#include <iostream>
void println(const auto& v)
{
    for (const auto& e : v)
        std::cout << e << ' ';
    std::cout << '\n';
}
int main()
{
    namespace ranges = std::ranges;
    std::array p{1, 6, 1, 6, 1, 6};
    println(p);
    ranges::replace(p, 6, 9);
    println(p);
    std::array q{1, 2, 3, 6, 7, 8, 4, 5};
    println(q);
    ranges::replace_if(q, [](int x) { return 5 < x; }, 5);
    println(q);
    std::array<std::complex<double>, 2> nums{{{1, 3}, {1, 3}}};
    println(nums);
    #ifdef __cpp_lib_algorithm_default_value_type
        ranges::replace(nums, {1, 3}, {4, 2});
    #else
        ranges::replace(nums, std::complex<double>{1, 3}, std::complex<double>{4, 2});
    #endif
    println(nums);
}

Sortie :

1 6 1 6 1 6
1 9 1 9 1 9
1 2 3 6 7 8 4 5
1 2 3 5 5 5 4 5
(1,3) (1,3)
(4,2) (4,2)

Voir aussi

copie une plage, en remplaçant les éléments satisfaisant des critères spécifiques par une autre valeur
(objet fonction algorithme)
remplace toutes les valeurs satisfaisant des critères spécifiques par une autre valeur
(modèle de fonction)